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Abstract

Multicast group communication is a useful augmentation to
CORBA both for fault-tolerant and highly available appli-
cations and for groupware and cooperative work applica-
tions. However, different multicast group communication
protocols are appropriate in different environments, e.g.,
local area vs. wide area networks, and Internet vs. ATM. In
this paper we present a multicast group communication en-
gine and bridge for CORBA that allows different multicast
group communication protocols to cooperate. The group
communication engine places Lamport timestamps on mes-
sages, and multicasts messages to object groups using
one or more group communication protocols. The group
communication protocols reliably deliver the timestamped
messages in timestamp order to the group communication
engine, which integrates these streams of messages into a
single stream for delivery in timestamp order.

1 Introduction
Fault tolerance and high availability can be provided for the
Common Object Request Broker Architecture (CORBA)
[17] by means of object replication, where the replicas of an
object form an object group. However, object replication is
of little value unless the states of the replicas of the objects
remain consistent as those states change when methods
are invoked on the object. Groupware and cooperative
work applications based on CORBA also depend on object
replication. Such applications require not only that the
states of the replicas remain consistent but also that the
activities of the applications are coordinated.

Group communication protocols [13] facilitate the main-
tenance of replica consistency, and the coordination of
activities, by multicasting Request and Reply messages
containing method invocations and responses, and by de-
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livering the messages reliably in the same order to all of
the members of a group. However, different group commu-
nication protocols are appropriate for effective operation
in different environments. One protocol is effective for
a local-area network, while a different protocol is appro-
priate for the Internet. The most appropriate protocol for
an ATM-based private virtual network would be differ-
ent again. Indeed, large-scale systems must be expected
to operate with several different protocols simultaneously.
Moreover, different protocols may operate in different do-
mains with gateways between unreplicated objects and the
domains, as shown in Figure 1.

Typical multicast group communication protocols are
self-contained and make little or no provision for cooper-
ation with other group communication protocols. Indeed,
given the demands placed on them, this closed view is un-
derstandable and almost inevitable. Thus, what is needed
for CORBA is a multicast group communication engine and
bridge that allow different group communication protocols
to be used concurrently.

In this paper we define the Multicast Group Inter-
net Inter-ORB Protocol (MGIOP), which maps CORBA’s
General Inter-ORB Protocol (GIOP) specifications onto a
multicast group communication protocol. We also present
interfaces for a multicast group communication engine and
bridge that allow multiple group communication protocols
to cooperate. We do not constrain the internal algorithms of
the group communication protocols or the message formats

Host1

Host2

Host3

Los Angeles
Domain

gate
way

Wide-area
Domain

Santa Barbara
Location Host6

Host7

New York
Domain

IIOP
TCP/IP

Host4

Host5

Figure 1: A gateway and domains.

1



that they use on the wire. The MGIOP engine and protocol
provide the following services:

� Multicasting

� Reliable message delivery

� Causal message delivery

� Totally ordered message delivery

� Group membership

� Virtual synchrony.

First we briefly discuss CORBA’s protocol specifica-
tions -- the General Inter-ORB Protocol (GIOP) and the
Internet Inter-ORB Protocol (IIOP), the mapping of GIOP
to TCP/IP.

2 GIOP and IIOP
The Generalized Inter-ORB Protocol (GIOP), defined for
CORBA [17], makes several assumptions about the under-
lying transport protocol:

� The transport is connection-oriented. The connections
provide the context within which request identifiers
are unique.

� The transport is reliable in that bytes are delivered in
the order in which they are sent and at most once.

� The transport can be viewed as a byte stream, with-
out message size limitations, fragmentation, or align-
ments.

� The transport provides notification of disorderly con-
nection loss, in particular, if the peer process aborts,
the peer host crashes, or the network becomes discon-
nected.

� The transport’s model for initiating connections can
be mapped onto the connection model of TCP/IP. In
particular, a server publishes a known network address
in an Interoperable Object Reference (IOR), which the
client uses when initiating a connection.

In the MessageHeader 1 1 for GIOP version 1.1, shown
in Figure 2, the magic field contains the characters ‘‘GIOP’’
and the GIOP version field is the version of GIOP being
used. The flags field specifies the byte ordering in sub-
sequent elements of the message, where 0 indicates big-
endian and 1 indicates little-endian. The message type field
specifies the type of message (Request, Reply, Cancel-
Request, LocateRequest, LocateReply, CloseConnection,
MessageError, Fragment), corresponding to the values of
the MsgType 1 1 enumeration type. The message size field
specifies the number of octets in the message following the
message header.

module GIOP f
struct Version f

octet major;
octet minor;

g;

enum MsgType 1 1 f
Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment

g;

enum MessageHeader 1 1 f
char magic [4]; // GIOP
Version GIOP version;
octet flags;
octet message type;
unsigned long message size;

g;
g;

Figure 2: IDL specification of GIOP version 1.1.

module IIOP f
struct Version f

octet major;
octet minor;

g;

enum ProfileBody 1 1 f
Version iiop version;
string host;
unsigned short port;
sequence<octet> object key
sequence<IOP::TaggedComponent> components;

g;
g;

Figure 3: IDL specification of IIOP version 1.1.

The Internet Inter-ORB Protocol (IIOP) is the TCP/IP
instantiation of GIOP. Servers publish TCP/IP addresses in
IORs, as defined by the ProfileBody 1 1 in Figure 3. The
host field in the ProfileBody 1 1 identifies the Internet host
to which the GIOP messages for the specified object are
sent and the port field contains the port number at that host.
The object key is an opaque value supplied by the server
that is used in the clients’ Request messages to identify the
server. The server maps the value onto the corresponding
object when routing requests internally. The components
field contains additional information that may be used when
a client invokes the server.

Servers listen for connection requests. A client initiates
a connection with a server, using the server’s address
given in the IOR. Once a connection is established, the
client may send Request, LocateRequest or CancelRequest
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messages over this connection. The server may send Reply,
LocateReply and CloseConnection messages to the client
over the same connection.

When a client sends a Request message, it includes a
request identifier in the header of the message. The client
subsequently uses the request identifier associate a Reply
message with the Request.

IIOP provides only point-to-point communication be-
tween a single source and a single destination, whereas
what is needed for simultaneous communication to the
members of a group (as in the replicas of an object) is a
multicast group communication protocol.

3 MGIOP Engine and Bridge
The multicast group communication engine and bridge,
described here, enable multiple group communication pro-
tocols to be used concurrently, as shown in Figure 4. They
coordinate, but do not control, the various group com-
munication protocols. No forwarding or conversion from
one multicast group communication protocol to another is
necessary, and the group communication protocols never
communicate directly with one another or know of each
others’ existence.

Each message multicast to an object group is conveyed
by the same group communication protocol to all members
of the group. However, a source can use different group
communication protocols to reach different destination
groups, and different sources can use different group com-
munication protocols to reach the same destination group.

The multicast group communication engine depends on
timestamps for message ordering and on heartbeat (i.e.,
null) messages for liveness. Timestamps and heartbeat
messages provide a convenient mechanism by which mul-
tiple group communication protocols can coexist without
constraining the on-the-wire message formats and inter-
nal algorithms of the protocols. Existing multicast group
communication protocols can easily be augmented with
timestamps and heartbeat messages, if they do not employ
those mechanisms.
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Each multicast group communication protocol reliably
delivers its timestamped messages in timestamp order to
the multicast group communication engine. The group
communication engine then integrates these streams of
messages into a single stream of messages for delivery in
timestamp order. The timestamps must be at least Lamport
synchronized [10], but better performance can be achieved
by means of synchronized clocks.

4 MGIOP Specification
Each GIOP message is encapsulated in a MGIOP header
which, in turn, is encapsulated in a group communication
message header, as shown in Figure 5. The MGIOP
header comprises the MGIOP tag, MGIOP version,
source domain id, source object group id, dest domain
id, dest object group id and connection id fields, as
shown in Figure 6. The MGIOP module, shown in Figures
7, 8 and 9, comprises the MGIOPEngine and MGIOPBridge
interfaces.

The MGIOP tag consists of the characters MGIOP,
and the MGIOP version is the version of MGIOP being
used. The source object group id is the identifier of the
object group that originated the message. The domain id
is the identifier of a domain that provides a context within
which the source domain id is unique, and similarly for
the dest object group id and dest domain id. The connec-
tion id consists of the domain identifier and object group
identifier of the client object group and a connection num-
ber supplied by the client object group. It provides a context
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Figure 6: MGIOP header format.



module MGIOP f
struct Version f

octet major;
octet minor;

g;

typedef sequence<octet>DomainId;
typedef long long ObjectGroupId;

typedef sequence<octet>HostId;
typedef sequence<HostId>HostIds;
typedef long long HostGroupId;

typedef unsigned long long Timestamp;
typedef unsigned long TimeInterval;

typedef unsigned long ConnectionNum;

struct ConnectionId f
DomainId domain id;
ObjectGroupId ogid;
ConnectionNum num;

g;

struct MGIOPSpecialTaggedProfile 1 0 f
Version MGIOP version;
DomainId domain id;
ObjectGroupId object group id;

g;

struct MGIOPMessageHeader 1 0 f
char magic[5]; // i.e. MGIOP;
Version MGIOP version;
DomainId source domain id;
ObjectGroupId source object group id;
DomainId dest domain id;
ObjectGroupId dest object group id;
ConnectionId connection id;

g;

struct MGIOPMessage 1 0 f
MGIOPMessageHeader 1 0;
GIOPMessage;

g;

exception UnsupportedProtocol fg;
exception DomainNotFound fg;
exception ObjectGroupNotFound fg;
exception ConnectionNotFound fg;
exception HostGroupNotFound fg;
exception HostNotFound fg;
exception InvalidMessage fg;
exception InvalidTimestamp fg;
exception InvalidTimeInterval fg;

Figure 7: IDL specification of the MGIOP module.

interface GroupMapperf
void map object group(in ObjectGroupId object group id,

in HostIds host ids);

void delete object group(in ObjectGroupId object group id)
raises(ObjectGroupNotFound);

void add host for object group(
in ObjectGroupId object group id,
in HostId host id)

raises(ObjectGroupNotFound);

void remove host for object group(
in ObjectGroupId object group id,
in HostId host id)

raises(ObjectGroupNotFound,HostNotFound);
g;

interface ProtocolMapper f
void map protocol(in ProtocolTag tag,

in HostIds host ids);
raises(UnsupportProtocol);

g;

interface MGIOPEngine: GroupMapper, ProtocolMapper f g;

Figure 8: IDL specification of the MGIOPEngine.

interface HostGroupManager f
void add host to host group(in HostId host id)

in HostGroupId host group id)
raises(HostGroupNotFound);

void remove host from host group(
in HostId host id,
in HostGroupId host group id)

raises(HostNotFound, HostGroupNotFound);
g;

interface MessageHandlerf
void send message(in MGIOPMessage msg,

in HostGroupId host group id,
in Timestamp timestamp)

raises(InvalidMessage,HostGroupNotFound,InvalidTimestamp);

Timestamp force();

void set heartbeat interval(in TimeInterval heartbeat interval)
raises(InvalidTimeInterval);

boolean is message available();

MGIOPMessage deliver message(out Timestamp timestamp);
g;

interface MGIOPBridge: HostGroupManager, MessageHandler f g;
g;

Figure 9: IDL specification of the MGIOPBridge.



within which the standard CORBA request identifiers are
unique. The MGIOPEngine at the destination (and also at
the source) uses the connection ids and request identifiers
to detect and suppress duplicate invocations and duplicate
responses from the replicas of an object.

The MGIOPEngine interface extends the GroupMapper
and ProtocolMapper interfaces. The GroupMapper maps
an object group to a set of hosts, and also adds hosts to,
and removes hosts from, sets of hosts. The ProtocolMapper
maps a group communication protocol to a set of hosts that
can be reached using that protocol.

The MGIOPBridge interface extends the HostGroup-
Manager and MessageHandler interfaces. The HostGroup-
Manager adds hosts to, and removes hosts from, host
groups. The MessageHandler multicasts and delivers mes-
sages to a host group that supports both the source and
destination object groups. The MGIOPEngine invokes the
methods of the HostGroupManager on the group commu-
nication protocols.

The send message(), force() and set heartbeat interval()
methods are invoked by the MGIOPEngine on the group
communication protocol at the source. The force method
is necessary to maintain Lamport causality [10] and total
ordering when multiple group communication protocols are
used, and one of those protocols changes the timestamp that
the MGIOPEngine gives to the message; more details are
provided in Section 6. The set heartbeat interval() method
is used to specify the time between sending heartbeat
messages, which are required for liveness.

The is message available() and deliver message() meth-
ods are invoked by the MGIOPEngine on the group
communication protocol at the destination. The
is message available() method enables the MGIOPEngine
to determine whether the group communication protocol
has a message available to deliver to it.

5 MGIOP Semantics
The MGIOP Engine and protocols satisfy the following
(informal) requirements:

� Multicasting. Messages are originated by an object
within a source object group and are addressed to a
destination object group. Messages are delivered to the
members of both the source group and the destination
group except that, if a group communication protocol
does not service a group, it is not required to deliver
messages to members of that group.

Multicasts may be simulated, for example by multiple
TCP/IP connections, or may employ properties of
the physical medium (e.g., hardward multicasts) for
improved performance.

� Reliable delivery. Every message addressed to an ob-
ject group or originated by an object group is delivered

to every member of the group, except for members
that are suspected of being faulty.

� Causal order. The precedes relation is the transitive
closure of:

-- If object replica O sends message m1 before
message m2, then m1 precedes m2.

-- If message m1 is delivered to object replica O
before O sends message m2, then m1 precedes
m2.

If both m1 and m2 are delivered to object replica O,
and m1 precedes m2, then m1 is delivered to O before
m2 is delivered to O.

� Total order. The ordered before relation is the
transitive closure of:

-- If message m1 is delivered to object replica O
before message m2 is delivered to O, then m1 is
ordered before m2.

-- If message m1 precedes message m2, then m1 is
ordered before m2.

-- The ordered before relation is acyclic.

If both m1 and m2 are delivered to object replica O,
and m1 is ordered before m2, then m1 is delivered to
O before m2 is delivered to O.

� Group membership. Membership changes occur at
specific points in the sequence of messages. At any
point in the sequence, object replicas O and Q in the
same object group G have the same view of the group,
i.e., ‘‘see’’ the same membership set.

� Virtual synchrony. If object replicas O and Q are in
the same object group view G and transition together
to the next group view G0, then the same messages
are delivered to O and Q while they are members of
object group view G.

Virtual synchrony is used to ensure that a state transfer
to initialize a new member of object group view G
occurs at the point in the message order corresponding
to a membership change. Thus, at the start of the next
object group view G0, all of the members of the group
have the same state.

These properties are not provided by IIOP.

6 Connection Management
6.1 Addressing Replicas
As a concrete implementation of the GIOP specifications,
MGIOP is connection-oriented. The MGIOP Engine uses a
Multiprofile IOR that contains a Special Tagged Profile as
the first profile, which is used to address the object group.
The other profiles of the Multiprofile IOR are the profiles of



primary or backup gateways into the domain for the object
group. The Special Tagged Profile contains the domain id
and the object group id of the destination object group.

6.2 Connection Establishment
The IORs that are provided for IIOP are sufficient for
individual object addressing, but are insufficient for object
group addressing. Fortunately, CORBA allows multiple
profiles (address endpoints) to be inserted into a single
IOR, and this can be exploited to enumerate the addresses
of the members of an object group.

1. The client-side MGIOPEngine extracts the server ob-
ject group id and domain id from the Special Tagged
Profile of the server’s multiprofile IOR.

2. The client-side MGIOPEngine determines the set of
hosts that support the client object group and the set of
hosts that support the server object group, and forms
the union of these two sets of hosts.

3. The client-side MGIOPEngine determines whether
there exists a protocol and a host group that supports
this union. If there does not exist such a protocol,
then it raises an exception. If there exists such a
protocol but there does not exist a host group that
encompasses the union, the MGIOPEngine chooses a
host group identifier and forms a host group with that
identifier, using the add host to host group() method
of the MGIOPBridge repeatedly.

4. The client-side MGIOPEngine then chooses a connec-
tion number and opens a connection.

6.3 Connection Release
1. Like other GIOP messages, the CloseConnection mes-

sage is multicast as a MGIOP message. The Cancel-
Request message is ignored because it can lead to
inconsistencies in the states of the replicas of an ob-
ject. Because the behavior of the replicas of an object
must be deterministic, a connection is closed at the
same logical point in time at the client and server
replicas.

7 MGIOP Information

7.1 Message Routing Table
The MGIOPEngine maintains the Message Routing Table
using the information in its Object/Host Group Table, as
shown in Figure 10. It updates the connection id in the
Message Routing Table when it establishes and releases a
connection.

The MGIOPEngine consults the Message Routing Table
to determine the appropriate set of hosts to which to
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Figure 10: Message Routing Table and Object/Host Group Table.

multicast the message and the appropriate multicast group
communication protocol to use.

7.2 Message Ordering Queue
Each multicast group communication protocol delivers a
sequence of messages to the MGIOPEngine in timestamp
order. The MGIOPEngine inserts these messages into its
Message Ordering Queue and delivers a combined sequence
of messages, again in timestamp order. If two messages
have the same timestamp, then it delivers the messages in
increasing order of protocol tag (where the protocol tags
are linearly ordered). The MGIOPEngine can deliver a
message from a group communication protocol when the
Message Ordering Queue contains a message, from each
of the other protocols, with a higher timestamp. The group
communication protocols must deliver heartbeat messages
periodically to prevent excessive delays under light traffic
conditions.

7.3 Object/Host Group Table
The MGIOPEngine maintains the correspondence between
the object group identifiers, host group identifiers and host
group membership.

Each multicast group communication protocol maintains
the correspondence between the destination host group
identifier, host group membership and destination multicast
address.

8 Sending and Receiving Messages
8.1 Sending a Request Message

1. The MGIOPEngine at the client determines which
connection, and thus which multicast group commu-
nication protocol, to use.

2. The MGIOPEngine constructs the MGIOP
header containing the MGIOP tag, mgiop version,
source domain id, source group id, dest domain id,
dest group id, and connection id.

3. The MGIOPEngine determines the timestamp to place
on the message, using the force() method if necessary.



4. The MGIOPEngine invokes the send message()
method of the MGIOPBridge, passing as a parameter
the message with its MGIOP header, the host group id
for the destination host group (which supports both the
client and server object groups) and the timestamp.

8.2 Receiving a Request Message
1. The MGIOPEngine at the server (client) ex-

tracts the dest domain id (source domain id) and the
dest group id (source group id) from the MGIOP
header.

2. The MGIOPEngine uses the dest domain id and
dest object group id to determine the internal ad-
dressing information for the object replica. The
MGIOPEngine consults the Object Group Mem-
bership Table using the dest object group id in the
MGIOP header to obtain the process id for the object
replica.

3. The MGIOPEngine enqueues the message for deliv-
ery, in timestamp order, to the object replica. It
delivers the message when it has received a message
with a larger timestamp from each of the other hosts
in the host group for the source and destination object
groups.

The steps for sending and receiving other types of GIOP
messages are similar.

9 Consistent Object/Host Groups
The MGIOPEngine maintains a mapping table that holds
the correspondence between the host group ids and the host
membership set for each protocol, as shown in Figure 10.
The MGIOPEngine records in this table changes to the host
group membership that result from changes to the object
group membership, namely,

� Adding a new object group

� Removing an object group

� Adding a new replica to an object group, which may
result in the addition of a host to an existing host group

� Removing a replica from an existing object group,
which may result in the removal of a host from an
existing host group

� Removing a host, and all of the objects on that host
from their respective objects group, because a host
failed.

10 Consistent Message Delivery
To achieve consistent method execution and therefore con-
sistent states of the replicas, the MGIOPEngine uses times-
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Figure 11: An example that illustrates how, without proper care, causality
can be violated when multiple group communication protocols are used.

tamps to ensure consistent message delivery (Lamport
causality and total ordering). To ensure Lamport causality
and total ordering, the following properties suffice:

1. All messages generated by an object have monotoni-
cally increasing timestamps.

2. Any message generated by an object has a timestamp
greater than the timestamp of every message delivered
to the object prior to the generation of that message.

3. All messages delivered to an object are delivered in
the order of increasing timestamps.

To allow flexibility in the group communication proto-
cols, each protocol is allowed to assign timestamps as it
sees fit, subject to satisfaction of the above three properties.
When passing a message to a protocol for transmission, the
MGIOPEngine attaches a timestamp to the message that
satisfies these three properties.

We say that a group communication protocol has the
Change Timestamp Property if it gives a message a times-
tamp different from that given to the message by the
MGIOPEngine. A group communication protocol may in-
crease the timestamp given to a message by the MGIOP
Engine, but it must not decrease the timestamp. If a group
communication protocol increases the timestamp, it must
ensure that it does not violate property 1 for messages that
it transmits (which is easy). A group communication pro-
tocol delivers messages to the MGIOPEngine in the order
of increasing timestamps.

The MGIOPEngine in turn delivers messages in the or-
der of increasing timestamp. To do this, the MGIOPEngine
must know, for each object and for each group communi-
cation protocol that could deliver a message to that object,
a timestamp such that the group communication protocol
will not deliver a message with a lower timestamp after it
delivers that message. The group communication proto-



col provides this information in the form of timestamped
heartbeat messages. This ensures property 3.

The MGIOPEngine maintains a current time value,
which it uses to generate the timestamps of outgoing mes-
sages. It compares the timestamps of incoming messages
with its current time value. If the current time value
is less than the timestamp of an incoming message, the
MGIOPEngine increases its current time value by setting
it equal to the value of that timestamp. The MGIOPEngine
increases the current time value before it uses the cur-
rent time value as the timestamp of an outgoing message.
This ensures property 2. Synchronized clocks are allowed,
provided that the synchronization maintains this Lamport
clock property.

To ensure property 1, the MGIOPEngine must handle
protocols that can increase the timestamps, i.e., have the
Change Timestamp Property. Two successive messages
generated by the same object using the same protocol cause
no problem. Similarly, no problem arises if an object
sends a message using a protocol that does not change
the timestamps and then sends a message using a different
protocol. However, a problem could arise if an object sends
a message using a protocol that changes the timestamps
and then sends a message using a different protocol. If
the timestamp of the first message were increased to be
larger than the timestamp of the second message, property 1
would be violated.

Consider the example shown in Figure 11. The
MGIOPEngine on the host of object P gives message
m1 the timestamp 101 and message m2 the timestamp
102. Protocol A increases the timestamp of message m1
to 110, while protocol B transmits message m2 with an
unchanged timestamp. Object Q receives message m2 and
the MGIOPEngine on the host of object Q gives message
m3 the timestamp 103 and protocol C transmits m3 with
an unchanged timestamp. Object R receives message m3
with timestamp 104 before it receives message m1 with
timestamp 110. This violates Lamport causality because
m1 was originated with a lower timestamp thanm3.

To address this problem we require that, if an ob-
ject sends a message using one protocol supported by the
MGIOPEngine that has the Change Timestamp Property
and then sends a message using a different protocol sup-
ported by the MGIOPEngin, the MGIOPEngine invokes
a special method, called the force() method, on the first
protocol before invoking the method of the MGIOPBridge
on the second protocol to transmit the second message.
The force() method returns a timestamp that is greater than
or equal to the timestamp chosen by the first protocol for
the message it transmitted. The MGIOPEngine updates
its current time to be the greater of its current time and
the timestamp returned by the force() method. The force()
method may incur a delay before the protocol can determine
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1. Initially the MGIOPEngine’s current time is 100.

2. The MGIOPEngine passes message m1 to multicast
group communication protocol A with timestamp 101.
No force is necessary.

3. The MGIOPEngine passes message m2 to protocol A
with timestamp 102. No force is necessary

4. The MGIOPEngine passes message m3 to protocol A
with timestamp 103.

5. The MGIOPEngine invokes the force method on protocol
A and waits for a response.

6. ProtocolA transmits messagem1 with timestamp 115.

7. ProtocolA transmits messagem2 with timestamp 116.

8. ProtocolA transmits messagem3 with timestamp 117.

9. Protocol A responds to the force() method with times-
tamp 117.

10. The MGIOPEngine sets its current time to 117.

11. The MGIOPEngine passes message m4 to multicast
group communication protocol B with timestamp 118.
No force is necessary.

12. The MGIOPEngine passes message m5 to protocol A
with timestamp 119.

13. ProtocolB transmits messagem4 with timestamp 118.

14. ProtocolA transmits messagem5 with timestamp 125.

Figure 12: An example of the use of the force() method. Multicast group
communication protocol A has the Change Timestamp Property, while
multicast group communication protocolB does not. ObjectO sends the
following messages: m1;m2;m3 using protocol A, m4 using protocol
B, and m5 using protocol A. Without the force method, m3 would
have been transmitted with timestamp 117 and m4 with timestamp 104,
resulting in a violation of Property 1.



that timestamp and, thus, is analogous to a forced write to
disk. This ensures property 1.

The requirement that any one message must be handled
by a single multicast group communication protocol for all
of its destinations implies that the message has the same
timestamp at all of its destinations. That requirement,
together with Property 2, suffices to ensure delivery in a
total order that is consistent system-wide.

11 Related Work
Over the past 15 years, there has been much work on multi-
cast group communication systems [13]. These systems are
useful both for fault-tolerant and highly available applica-
tions and for groupware and cooperative work applications.

Multicast group communication systems include the Isis,
Horus and Ensemble systems [4, 22], which provide the
services of multicast, causal multicast and atomic (total or-
der) multicast. Those systems provide increasing flexibility
in allowing the user to choose the protocol most appropriate
for the application.

The Trans/Total system [12] includes the Trans protocol
which provides a causal order on messages, and the Total
algorithm which converts this causal order into a total
order on messages. The Transis system [2] is based on
the Trans protocol and on the Isis application programmer
interface. The Totem system [14] uses a ring-based protocol
to achieve robust operation and high performance.

The above systems are primarily oriented towards local-
area networks. More recent work has focused on the
development of group communication systems that are
scalable and oriented towards wide-area networks.

The InterGroup system [3] is intended for the Internet,
and is designed to support very large groups. It is intended
for Distributed Collaboratory Environments, which are
intended to allow scientists and engineers to collaborate,
and to control equipment remotely, over the Internet. The
Atomic Group system [9] is intended for ATM networks,
and is designed to support large numbers of small groups.
Several other researchers [6, 19, 21] have also undertaken
work on multicast group communication systems that aim
for scalability and wide-area operation.

Several systems have been developed that use multi-
cast group communication to augment CORBA application
objects with high availability and fault tolerance.

These systems include the Electra toolkit, implemented
on top of Horus, and Orbix+Isis, implemented on top of
the Isis [11]. Both Electra and Orbix+Isis integrate the
replication and group communication mechanisms into the
ORB and require modification of the ORB.

The Eternal system [15, 16] that we have developed
provides fault tolerance for CORBA, using the Totem
system to maintain replica consistency in a manner that
is transparent to the ORB. In addition to transparency to

the ORB, Eternal has the objectives of transparency to the
application and ease of application programming.

The Maestro toolkit adds reliability and high availability
to CORBA applications, particularly for applications with
unreplicated clients and replicated servers. The AQuA
framework [5] uses the Ensemble/Maestro [22, 23] toolkits,
as well as the Quality Objects (QuO) runtime and the
Proteus dependability property manager, to provide fault
tolerance for CORBA.

The Object Group Service (OGS) [7] provides object
replication through a set of services implemented on top of
the ORB, including a group service, a consensus service, a
monitoring service and a messaging service.

The Distributed Communicating Object group system
(DCO) [8] also provides for communicating object groups,
reliable communication protocols, group membership and
management. The goals of DCO are similar to those of the
Eternal system.

Other systems have been developed that use multi-
cast group communication for groupware and computer-
supported cooperative work (CSCW).

The Java Collaborative Environment (JCE) [1] allows a
group of Internet users to share single-user Java applications
for synchronous collaboration. JCE is a replicated tool
architecture in which each participant runs a copy of the
application and the activity of each user is multicast to all
of the conference participants.

The mStar environment [18] provides support for scal-
able distributed teamwork. It enables collaborative review-
ing of text and images, text based group chat, distributed
voting and shared WWW objects, based on IP-multicast.

The system of Sun, Zhang and Yang [20] synchro-
nizes distributed group operations in order to maintain
consistency of shared documents in cooperative editing
environments.

12 Conclusion
We have shown how CORBA can be enhanced with mul-
ticast group communication capabilities, and have given
a concrete mapping of CORBA’s General Inter-ORB Pro-
tocol specification onto a multicast group communication
protocol. We have presented a multicast group communi-
cation engine and bridge for CORBA that allows the use of
multiple group communication protocols concurrently,with
different implementation strategies appropriate to different
environments, such as local-area vs. wide-area networks
and Internet vs. ATM. The multicast group communication
engine timestamps messages using Lamport timestamps,
and delivers messages in timestamp order. When switching
from one protocol to another, where the second protocol
increases the timestamps of the messages, the multicast
group communication engine employs a force() method to
ensure Lamport causality and total ordering.
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